Curing More Cervical Cancer Cases May be in the Math

Quicker identification of non-responding tumors may be possible using a new mathematical model developed by researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute.

The model uses information from magnetic resonance imaging (MRI) scans taken before and during therapy to monitor changes in tumor size. That information is plugged into the model to predict whether a particular case is responding well to treatment. If not, the patient can be changed to a more aggressive or experimental therapy midway through treatment, something not possible now.

The study, published in the journal Cancer Research, uses MRI scans and outcome information from 80 cervical cancer patients receiving a standard course of radiation therapy designed to cure their cancer.

“The model enables us to better interpret clinical data and predict treatment outcomes for individual patients,” says principal investigator Jian Z. Wang, assistant professor of radiation medicine and a radiation physicist at the OSUCCC-James.

“The outcome predictions presented in this paper were solely based on changes in tumor volume as derived from MRI scans, which can be easily accessed even in community hospitals,” Wang says. “The model is very robust and can provide a prediction accuracy of 90 percent for local tumor control and recurrence.”

A strength of the new model, says first author Zhibin Huang, is its use of MRI data to estimate three factors that play key roles in tumor shrinkage and that vary from patient to patient – the proportion of tumor cells that survive radiation exposure, the speed at which the body removes dead cells from the tumor, and the growth rate of surviving tumor cells.

The model is applicable to all cervical cancer patients, and the investigators are developing a model that can be applied to other cancer sites, Wang says.

Co-author Dr. Nina A. Mayr, professor of radiation medicine at Ohio State, notes that the size of cervical tumors is currently estimated by touch, or palpation, which is often imprecise. Furthermore, shrinkage of a tumor may not be apparent until months after therapy has ended.

Other clinical factors currently used to predict a tumor’s response to therapy include the tumor’s stage, whether it has invaded nearby lymph nodes and its microscopic appearance.

“Our kinetic model helps us understand the underlying biological mechanisms of the rather complicated living tissue that is a tumor,” Wang says. “It enables us to better interpret clinical data and predict treatment outcomes, which is critical for identifying the most effective therapy for personalized medicine.”

This study was supported by a grant from the National Cancer Institute.

Other Ohio State researchers involved in this study were William T.C. Yuh, Simon S. Lo, Joseph F. Montebello, John C. Grecula, Lanchun Lu, Kaile Li, Hualin Zhang and Nilendu Gupta.

The Ohio State University Comprehensive Cancer Center- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top 20 cancer hospitals in the nation, The James (www.jamesline.com) is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only seven programs in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

Contact:
Darrell E. Ward
Medical Center Communications
614-293-3737
Darrell.Ward@osumc.edu

Media Contact

Darrell E. Ward EurekAlert!

More Information:

http://www.osumc.edu

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Scientists transform blood into regenerative materials

… paving the way for personalized, blood-based, 3D-printed implants. Scientists have created a new ‘biocooperative’ material based on blood, which has shown to successfully repair bones, paving the way for…

A new experimental infection model in flies

…offers a fast and cost-effective way to test drugs. Researchers at the Germans Trias i Pujol Research Institute and Hospital have reinforced their leading role in infectious disease research by…

Material developed with novel stretching properties

KIT researchers produce metamaterial with different extension and compression properties than conventional materials. With this material, the working group headed by Professor Martin Wegener at KIT’s Institute of Applied Physics…