Drought hits rivers first and more strongly than agriculture

Before crops wither and agriculture is affected, runoff and hence water resources are impacted. picture: Andrea Carri (distributed via imaggeo.egu.eu), licensed under CC BY 3.0

The study reports that droughts develop slowly and have delayed and multi-faceted impacts. As such, the full drought phenomenon and its consequences are usually not readily perceived, in contrast to faster developing extreme weather events, like floods or heat waves.

“With the persistent rainfall deficit this summer across large parts of Western Europe, drought has recently become more perceivable. It has already caused serious societal and ecosystem impacts along its development pathways.” says Rene Orth, group leader at Max-Planck Institute for Biogeochemistry in Jena, Germany.

The study reveals these typical drought development pathways: rainfall deficits propagate first through soil moisture reductions, then to river runoff depletions, and finally cause impacts on vegetation and crop yields. Deciphering this partitioning of water deficits across different parts of the freshwater system is a crucial step forward in mitigation strategies, as the respective water anomalies threaten different societal sectors and ecosystems.

The researchers suggest that drought response measures need to be tailored based on their new findings on drought development: Early into a drought, response measures should focus on adapting to low(er) stream flows by more efficiently using and storing water.

Further into the drought, the focus should be on irrigation support of essential crops and vegetation, while balancing and temporarily limiting other water uses. “Such improved drought management might become even more relevant in the future, with possibly increasing drought frequency and/or magnitude as the climate changes” says Georgia Destouni, Professor at Stockholm University in Sweden.

The study was conducted by Rene Orth (rene.orth@bgc-jena.mpg.de), group leader at the Max Planck Institute for Biogeochemistry in Jena, Germany, and Georgia Destouni (georgia.destouni@natgeo.su.se), Professor at Stockholm University, Sweden.

Dr. Renè Orth, Max Planck Institute for Biogeochemistry
Groupleader Hydrology-Biosphere-Climate Interactions
Email: rene.orth@bgc-jena.mpg.de
Phone: +49 3641 576250

Orth R. and G. Destouni, 2018. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe, Nat. Commun. (2018) 9:3602
https://www.nature.com/articles/s41467-018-06013-7

Media Contact

Dr. Eberhard Fritz Max-Planck-Institut für Biogeochemie

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Illustration of multiferroic heterostructures enabling energy-efficient MRAM with giant magnetoelectric effect.

Magnetic Memory Unlocked with Energy-Efficient MRAM

Researchers from Osaka University introduced an innovative technology to lower power consumption for modern memory devices. Stepping up the Memory Game: Overcoming the Limitations of Traditional RAM Osaka, Japan –…

Framework for automating RBAC compliance checks using process mining and policy validation tools.

Next-Level System Security: Smarter Access Control for Organizations

Cutting-Edge Framework for Enhancing System Security Researchers at the University of Electro-Communications have developed a groundbreaking framework for improving system security by analyzing business process logs. This framework focuses on…

Deep-sea sediment core highlighting microbial carbonate formation at methane seeps.

How Microbial Life Shapes Lime Formation in the Deep Ocean

Microorganisms are everywhere and have been influencing the Earth’s environment for over 3.5 billion years. Researchers from Germany, Austria and Taiwan have now deciphered the role they play in the…