Fructose produces less rewarding sensations in the brain

The MRI image clearly shows how the brain's reward, or limbic, system behaves differently when administered a placebo (top) or one of two types of sugar, glucose (center) and fructose (bottom). Image: University of Basel, Department of Biomedicine

Fruit sugar, or fructose, is a carbohydrate that occurs naturally in fruits and vegetables and is generally harmless in this form. Despite their similar structures, fructose and glucose – that is, pure grape sugar – affect the body very differently: an intake of glucose causes a sharp increase in blood insulin within minutes, whereas fructose stimulates insulin secretion to a limited degree only.

Teams of researchers led by Professor Christoph Beglinger from the University Hospital and Professor Stefan Borgwardt from the Psychiatric University Clinics (UPK Basel) have now taken a more in-depth look at how these two types of sugar affect interactions between the gastrointestinal tract and the brain.

Their work was funded by the Swiss National Science Foundation. In their study, the researchers used combined pharmacological and imaging methods such as functional magnetic resonance imaging (MRI).

Brain activity examined

In the placebo-controlled, double-blind study, twelve healthy young men were given either fructose, glucose or a placebo by way of a feeding tube. Blood samples were then taken from the subjects to measure satiety hormones. The subjects were also asked about how satiated they felt, and their brain activity was monitored by MRI while at rest.

The findings of the pilot study were as follows. Unlike glucose, fructose is less effective at creating feelings of satiety and stimulating the reward system in the brain. An analysis of the MRIs in fact showed that the two types of sugar differed greatly in terms of network activation within the hippocampus and amygdala areas of the limbic system, i.e. the regions of the brain that regulate emotions and impulses.

Furthermore, in contrast to glucose (which stimulated a strong signal) the levels of satiety hormones in the blood barely or only minimally increased following fructose consumption. The subjective feeling of satiety also tended to be less affected by the consumption of fructose.

The problem of fructose

“The study may provide the first key findings about the lack of satiety and rewarding effects triggered by fructose,” state lead authors Dr Bettina Wölnerhanssen and Dr Anne Christin Meyer-Gerspach. The role of the differing insulin levels and other effects will have to be demonstrated in further studies with more test subjects.

Research is increasingly finding indications that isolated, industrially manufactured fructose – which is increasingly used in sugary drinks, sweets and ready meals – is problematic for the human body. It is suspected that fructose promotes the development of various disorders such as obesity, diabetes, fatty liver disease and gout.

Original source

Bettina Karin Wölnerhanssen, Anne Christin Meyer-Gerspach, André Schmidt, Nina Zimak, Ralph Peterli, Christoph Beglinger, Stefan Borgwardt
Dissociable Behavioral, Physiological and Neural Effects of Acute Glucose and Fructose Ingestion: A Pilot Study
Plos One, published June 24, 2015, doi: 10.1371/journal.pone.0130280

Further information

Dr. Bettina Wölnerhanssen, Department of Biomedicine,University and University Hospital Basel, phone +41 61 328 73 78, email: bettina.woelnerhanssen@usb.ch

Media Contact

Christoph Dieffenbacher Universität Basel

More Information:

http://www.unibas.ch

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Chimpanzee in a tropical forest demonstrating genetic adaptations for survival.

Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans

The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…