Mechanomyography to be accurate in detecting nerves during minimally invasive spine surgery
The issue becomes important for patients as the demand for minimally invasive surgical techniques continues to grow, so does the need for effective methods for monitoring the location of nerves during surgery to avoid damage to them.
Mechanomyography (MMG) systems function by measuring the mechanical response of muscle following nerve stimulation, compared to traditional techniques that monitor the electrical response of muscle using electromyography (EMG). EMG systems are widely used as intraoperative tools to help surgeons avoid nerve injury. MMG has been widely used in laboratory settings to study things such as muscle fatigue, however up until now it has not been applied as an intraoperative tool for locating nerves.
“We felt there was a safer and faster way to intra-operatively monitor the location of nerves and we wanted to test this theory by directly comparing MMG to EMG,” says Stephen Bartol, MD, orthopedic spine surgeon at Henry Ford Hospital. “We found MMG to be extremely effective for detecting the presence of nerves during minimally invasive surgical procedures when the nerves could not be directly visualized.”
Dr. Bartol presented results from the study this week at the Tenth Annual Scientific Conference of the Canadian Spine Society in Alberta.
According to the National Institutes of Health, in a three-month period, about one-fourth of U.S. adults experience at least one day of back pain. It is one of the most common medical issues affecting Americans.
During minimally invasive spine surgery, a common treatment for chronic back pain, a small electrical signal is sometimes used to stimulate nerves and detect responses so that nerves are not damaged during surgery.
“Because conventional EMG systems monitor for subtle changes in muscle electrical activity, there is the potential for electrical interference. By using an MMG system, we are not worried about electrical interference since the response to electrical stimulation is measured through mechanical sensors instead,” says Dr. Bartol.
In an animal model, Dr. Bartol and his colleagues measured the EMG and MMG responses to electrical current.
“We found that the MMG system had a faster response, indicating a higher sensitivity for detection of nerves at a lower threshold,” says Dr. Bartol.
In another study, also presented at the conference, Dr. Bartol took a look at how the muscle response to electrical stimulus varies with the distance of the nerve from the source of the stimulus.
“We need to know exactly how far away we are from the nerve. Working with different levels of current, we were able to establish a relationship between the current and distance, allowing the surgeon to determine precisely how far a nerve is from the stimulus probe,” says Dr. Bartol.
They found MMG detected the presence of a nerve on average 1.2 seconds earlier than EMG, using approximately half the amount of stimulating current. Since electrical resistance is highly variable, depending on the conducting tissue, EMG monitoring systems may utilize currents as high as 200 mA. The MMG system in this study has a maximum current output of 6 mA, nearly 35 times less than comparable EMG systems.
“We found mechanomyography to be a more sensitive indicator for locating nerves,” says Dr. Bartol. “We can, without looking, know within a millimeter or two where we are in relation to the nerve. By utilizing a system that requires less electrical current, we may be able to further decrease the risk of injury to our patients.”
Dr. Bartol explains that further investigation is needed in human trials.
Industry funding for both studies was received from Innovative Surgical Solutions, LLC, based in Royal Oak, MI.
Media Contact
More Information:
http://www.hfhs.orgAll latest news from the category: Studies and Analyses
innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…