Methylation signaling controls angiogenesis and cancer growth
Angiogenesis creates new blood vessels in a process that can lead to the onset and progression of several diseases such as cancer and age-related macular degeneration.
Vascular endothelial growth factor (VEGF) is a signaling protein produced by damaged cells, which binds to one of its receptors VEGFR-2, located on the surface of blood vessel cells.
Once VEGF is bound to its receptor, it is activated and sends a biochemical signal to the inside of the blood vessel cell to initiate angiogenesis. There are currently multiple Federal Drug Administration-approved medications that target this process. However these medications are limited by insufficient efficacy and the development of resistance.
The researchers demonstrated that a biochemical process called methylation, which can regulate gene expression, also affects VEGFR-2, and this can lead to angiogenesis. Using multiple methods, the researchers were able to interfere with the methylation process of VEGFR-2 and subsequently block angiogenesis and tumor growth.
“The study points to the methylation of VEGFR-2 as an exciting, yet unexplored drug target for cancer and ocular angiogenesis, ushering in a new paradigm in anti-angiogenesis therapy,” said Nader Rahimi, PhD, associate professor of pathology, BUSM, who served as the study's senior investigator.
Ed Hartsough, a graduate student and Rosana Meyer, a postdoctoral fellow at the department of pathology, BUSM, are the co-primary authors. Funding for this study was provided in part by the National Institutes of Health through grant award numbers R01EY017955, P41 RR010888/GM104603, S10 RR020946, HHSN268201000031C and DK080946 AQ12 and the Massachusetts Lions Foundation.
Media Contact
More Information:
http://www.bmc.orgAll latest news from the category: Studies and Analyses
innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.
Newest articles
Nerve cells of blind mice retain their visual function
Nerve cells in the retina were analysed at TU Wien (Vienna) using microelectrodes. They show astonishingly stable behavior – good news for retina implants. The retina is often referred to…
State-wide center for quantum science
Karlsruhe Institute of Technology joins IQST as a new partner. The mission of IQST is to further our understanding of nature and develop innovative technologies based on quantum science by…
Newly designed nanomaterial
…shows promise as antimicrobial agent. Rice scientists develop nanocrystals that kill bacteria under visible light. Newly developed halide perovskite nanocrystals (HPNCs) show potential as antimicrobial agents that are stable, effective…