Preventing and treating drug use with smartphones
Clinical researchers at the University of Massachusetts Medical School (UMMS) are combining an innovative constellation of technologies such as artificial intelligence, smartphone programming, biosensors and wireless connectivity to develop a device designed to detect physiological stressors associated with drug cravings and respond with user-tailored behavioral interventions that prevent substance use. Preliminary data about the multi-media device, called iHeal, was published online first in the Journal of Medical Toxicology.
According to the study's authors, many behavioral interventions used to treat patients are ineffective outside of the controlled clinical settings where they are taught. This failure can be attributed to several factors, including a patient's inability to recognize biological changes that indicate increased risk of relapse and an inability to change their behaviors to reduce health risk.
Edward Boyer, MD, PhD, professor of emergency medicine at UMass Medical School and lead author of the study, worked with colleagues at UMMS and at the Massachusetts Institute of Technology, to design a mobile device using so-called “enabling technologies” that could be used to make behavioral interventions for substance abusers more effective outside the clinic or office environments. The result of their work, iHeal, combines sensors to measure physiological changes and detect trigger points for risky health behaviors, such as substance use, with smartphone software tailored to respond with patient-specific interventions.
Individuals with a history of substance abuse and post-traumatic stress disorder were asked to wear an iHeal sensor band around their wrist that measures the electrical activity of the skin, body motion, skin temperature and heart rate – all indicators of stress. The band wirelessly transmits information to a smartphone, where software applications monitor and process the user's physiological data. When the software detects an increased stress level, it asks the user to annotate events by inputting information about their perceived level of stress, drug cravings, and current activities. This information is then used to identify, in real-time, drug cravings and deliver personalized, multimedia drug prevention interventions precisely at the moment of greatest physiological need.
Boyer and his teams examined the iHeal system architecture, as well as preliminary feedback from initial users, to identify key attributes and assess the device's viability. Their analyses suggest a number of technical issues related to data security, as well as the need for a more robust and less stigmatizing version before the device could be worn in public.
About the University of Massachusetts Medical School
The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $277 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. For more information, visit www.umassmed.edu
Media Contact
More Information:
http://www.umassmed.eduAll latest news from the category: Studies and Analyses
innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.
Newest articles
Reconstructing plesiosaur swimming styles with bio-mimetic control
A research group may have unraveled the mystery behind the locomotion of the ancient marine reptile, the plesiosaur, by recreating a bio-inspired control system that accounts for motion adjustment. Extinct…
Kagome breaks the rules at record breaking temperatures
In case you’re scratching your head, we help break it down. Using muon spin rotation at the Swiss Muon Source SmS, researchers at PSI have discovered that a quantum phenomenon…
New findings on heart failure
Dysferlin protein protects and shapes the membrane of heart muscle cells. Researchers from the Heart Center of the University Medical Center Göttingen (UMG) led by Priv.-Doz. Dr Sören Brandenburg have…