Yeast model yields insights into Parkinson’s disease
Scientists who developed the first yeast model of Parkinsons disease (PD) have been able to describe the mechanisms of an important genes role in the disease. Tiago Fleming Outeiro, Ph.D., and Susan Lindquist, Ph.D., of the Whitehead Institute for Biomedical Research in Cambridge, Massachusetts, studied the genes actions under normal conditions and under abnormal conditions to learn how and when the genes product, alpha-synuclein, becomes harmful to surrounding cells. The scientists created a yeast model that expresses the alpha-synuclein gene, which has been implicated in Parkinsons disease (PD). Yeast models are often used in the study of genetic diseases because they offer researchers a simple system that allows them to clarify how genes work.
The National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, funded the study, which appears in the December 5, 2003, issue of Science.
The alpha-synuclein protein, which is found broadly in the brain, has been implicated in several neurodegenerative disorders. Sometimes a mutation or a misfolding of the protein causes the problems; other times there are too many copies of the normal gene. A study earlier this year reported that patients with a rare familial form of PD had too many normal copies of the alpha-synuclein gene, which resulted in a buildup of protein inside brain cells, causing the symptoms of PD.
Drs. Outeiro and Lindquist conducted their study by creating one yeast that expresses wild type synuclein, using the normal gene, and another yeast that expresses two mutant forms, using a mutated version of the gene found in patients with PD.
One theory for the cause of PD is that an aging brain no longer has the capacity to cope with accumulating or misfolding proteins. A normal healthy brain has the ability to clear out excess or mutant proteins through a process known as the quality control system. In the yeast model of PD, when the scientists doubled the expression of the alpha-synuclein gene it “profoundly changed” the fate of the yeasts quality control system, and alpha-synuclein appeared in large clumps of cells (inclusion bodies). This did not happen when they studied the actions of a single copy of the wild type synuclein. These inclusion bodies have a toxic effect that causes cell death and neurodegeneration.
“Just a twofold difference in expression was sufficient to cause a catastrophic change in behavior,” the scientists report in their paper.
“These changes may give insight into important changes that happen when alpha-synuclein is overexpressed in Parkinsons patients,” said Diane Murphy, Ph.D., a program director at the NINDS. “Dr. Lindquist is well known for her studies of yeast models of prion disease, and we are delighted she has extended her research to the important field of Parkinsons disease.”
PD is the second most common neurodegenerative disease after Alzheimers disease and is thought to affect 500,000 Americans.
The NIHs National Institute of Neurological Disorders and Stroke leads Federal efforts to conduct and support basic and clinical research on diseases of the brain and central nervous system. The agencies are part of the U.S. Department of Health and Human Services.
“Yeast Cells Provide Insight into Alpha-Synuclein Biology and Pathobiology,” Outeiro, T.F. and Lindquist, S. Science, Vol. 302, pp. 1772-1775.
Media Contact
More Information:
http://www.ninds.nih.gov/All latest news from the category: Studies and Analyses
innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…