Physicists find patterns within seemingly random events of physiological systems
Finding patterns behind seemingly random events is the signature of a recent trio of research studies coming from the statistical physics group in Boston Universitys Department of Physics. Although describing physical phenomenon is not a surprising industry for research physicists, findings from this BU group increasingly wed phenomena associated with the inanimate world to those of animate beings — finding commonalities between stock markets fluctuations, earthquakes, and heart rates, for example, or discovering similarities in mice, men, and other mammals for such fundamental phenomena as wake periods during slumber.
Eugene Stanley, a professor of physics and director of BUs Center for Polymer Studies, Plamen Ivanov, a research associate in the Center, and Kun Hu, a research assistant in physics, will discuss their findings March 22 at the American Physical Society meeting in Los Angeles.
The team sought to investigate the role the bodys internal clock, the circadian pacemaker, might have on heart performance either directly, through influencing cardiac dynamics such as heartbeat, or indirectly, through its influence on motor activity control. Their analyses of heartbeat dynamics from participants show a significant circadian rhythm, including a notable response at the circadian phase corresponding to 10 a.m., the time of day most often linked to adverse cardiac events in individuals with heart disease. Circadian rhythm, however, does not affect motor activity dynamics, according to their recent analyses, leading the researchers to speculate that the early-morning peak in cardiac risk is not related to circadian-mediated influences on motor activity.
In research on the dynamical features of the brief awakenings and sleep periods that occur in different mammalian species, the scientists found that the periods of wakefulness that snuggle between sleep periods of various mammalian species, are similar. The findings lead them to speculate that, instead of merely being random disruptions in the sleep cycle, periods of brief wakefulness exhibit what is known as self-organized criticality. This physical phenomenon is exhibited in events such as avalanches, where a system exists in a quiet state, accumulating energy, until it reaches a “tipping” point and collapses, only to build up again and repeat the cycle. The researchers, therefore, speculate that the dynamical patterns found in these wakefulness periods may hint at underlying similarities to the neural networks controlling mammalian sleep.
Scientists at Boston Universitys Center for Polymer Studies, part of BUs Department of Physics in the College and Graduate School of Arts and Sciences, research polymer systems at the microscopic level, focusing on describing the basic spatial configurations of polymer molecules so as to better predict the macroscopic behavior of polymers. Interdisciplinary science research at the Center includes studies of cardiac dynamics, the statistical mechanisms of Alzheimers disease, and simulations of liquid water.
Media Contact
More Information:
http://www.bu.eduAll latest news from the category: Studies and Analyses
innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.
Newest articles
Velcro DNA helps build nanorobotic Meccano
Innovative nanostructures pave the way for advanced robotics – and mini dinosaurs. Researchers at the University of Sydney Nano Institute have made a significant advance in the field of molecular…
A new approach to predicting malaria drug resistance
Study of malaria parasite genomes paves the way for new, more effective treatments. Researchers at University of California San Diego analyzed the genomes of hundreds of malaria parasites to determine…
Structural link for initiation of protein synthesis in bacteria
Within a cell, DNA carries the genetic code for building proteins. To build proteins, the cell makes a copy of DNA, called mRNA. Then, another molecule called a ribosome reads…