Type 1 diabetics required for ground-breaking vision study

OPTOMETRY researchers at Aston University’s new £10 million Academy of Life Sciences are currently undertaking ground-breaking research into the vision problems caused by diabetics – one of the leading causes of blindness and vision loss in the UK. So far, the study has been very successful with a large number of diabetic volunteers stepping forward to take part in the study, but the researchers still require some more Type 1 diabetics (insulin dependent patients usually diagnosed under the age of 30) in order to obtain reliable results.


Their research, which is the first of its kind in the world, will measure the effects of the daily cycles of blood sugar levels on the vision of diabetic patients via detailed eye examinations using state of the art equipment. This will help the scientists to gain vital understanding of how the disease causes vision problems in diabetics and, specifically, its effects on the retinal tissue (sensitive tissue at the back of the eye) over the course of the day.

With an estimated 1.4 million diabetic sufferers in the UK the results of the research will have significant implications of the vision and health of a large number of people.

In order to obtain the significant and reliable results required the researchers hope that further Type 1 diabetics will take part in a series of six short vision assessments over a period of 12 hours. Participants may be of any age and either sex and do not need a vision problem to take part. All volunteers receive a £50 payment and meals on the day in thanks for their involvement. Tests involve reading test charts and having non-invasive retinal photographs taken. Dilating drops will not be used and therefore volunteers will be able to drive after the study. Blood sugar levels will be taken regularly using the finger prick blood test.

The study, which has been organised by Helena Workman – a PhD research optometrist at the university – is taking place in the Aston Academy of Life Sciences, a new state of the art facility for academic research and private medical care. It is the only resource of its kind in Europe and includes a centre for excellence for eye research, diagnosis and surgery. The Academy will provide sophisticated equipment for the research including a camera designed to photograph the back of the eye and measure the thickness of retinal tissue. Most hospitals do not have access to this equipment, thus indicating the importance and uniqueness of the research.

Helena explains: ‘our hope is that our research will help provide a unique insight into diabetes as a whole and the way in which blood sugar control may affect the vision of our diabetic population in their daily lives. We have had an excellent response from diabetic sufferers, but have found that we have had many more Type 2 volunteers than Type 1. It is important that we have some more Type 1 participants in order that we can make important conclusions about the potential differences between the two types of diabetics in terms of vision, visual function and blood sugar levels.’

Anyone interested in volunteering for the study or requiring more information should contact Aston Academy Reception on 0121 204 3800 or alternatively email h.l.workman@aston.ac.uk

Media Contact

Barbara Coombes alfa

More Information:

http://www.aston.ac.uk

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Long-sought structure of powerful anticancer natural product

…solved by integrated approach. A collaborative effort by the research groups of Professor Haruhiko Fuwa from Chuo University and Professor Masashi Tsuda from Kochi University has culminated in the structure…

Making a difference: Efficient water harvesting from air possible

Copolymer solution uses water-loving differential to induce desorption at lower temperatures. Harvesting water from the air and decreasing humidity are crucial to realizing a more comfortable life for humanity. Water-adsorption…

In major materials breakthrough

UVA team solves a nearly 200-year-old challenge in polymers. UVA researchers defy materials science rules with molecules that release stored length to decouple stiffness and stretchability. Researchers at the University…