Sharks and wolves: Predator, prey interactions similar on land and in oceans

In each case, the major predators help control the populations of their prey, scientists said. But through what’s been called the “ecology of fear” they also affect the behavior of the prey, with ripple impacts on other aspects of the ecosystem and an ecological significance that goes far beyond these species.

The study was done by scientists from Oregon State University and the University of Washington, and was published in Frontiers in Ecology and the Environment, a professional journal.

“For too long we’ve looked at ecosystem functions on land and in the oceans as if they were completely separate,” said William Ripple, a professor in the Department of Forest Ecosystems at Society at OSU, and an international expert in the study of large predators such as wolves and cougars.

“We’re now finding that there are many more similarities between marine and terrestrial ecosystems than we’ve realized,” Ripple said. “We need to better understand these commonalities, and from them learn how interactions on land may be a predictor of what we will see in the oceans, and vice versa.”

In this study, Ripple and collaborator Aaron Wirsing, a researcher with the School of Forest Resources at the University of Washington, compared what has been learned about wolf and elk interaction in Yellowstone National Park in the U.S. to the interplay of tiger sharks and dugongs in Shark Bay, Australia. Dugongs are large marine mammals, similar to manatees, that feed primarily on seagrasses and are a common prey of sharks.

In studies with elk, scientists have found that the presence of wolves alters their behavior almost constantly, as they try to avoid encounters, leave room for escape and are constantly vigilant. The elk graze less in sensitive habitats, which in Yellowstone is helping streamside shrubs and aspen trees to recover, along with other positive impacts on beaver dams and wildlife.

Conceptually similar activities are taking place between sharks and dugongs, the researchers found. When sharks are abundant, dugongs graze less in shallow water where they are most vulnerable to sharks, and sacrifice food they might otherwise consume. This allows the seagrass meadows to thrive, along with the range of other plant and marine animal species that depend on them.

Related marine interactions have been observed in the North Atlantic Ocean, Ripple said. As shark populations were diminished by overfishing, the number of rays increased, which in turn reduced the level of sea scallops, an important fishery.

The marine/terrestrial similarities are also reflected in the body condition and health of species, the researchers noted. In Shark Bay, green sea turtles are more willing to face risks from sharks and seek the best grazing areas when their body condition is strong. In like fashion, the common wildebeest on the African Serengeti are less vulnerable to attack by lions or hyenas when their physical condition is good.

A more frequent information exchange between terrestrial and marine ecologists could provide additional insights into ecosystem function, the researchers said in their report.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

Media Contact

Bill Ripple EurekAlert!

More Information:

http://www.oregonstate.edu

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Octopus-inspired technology successfully maneuvers underwater objects

Using mechanisms inspired by nature to create new technological innovations is a signature of one Virginia Tech research team. The group led by Associate Professor Michael Bartlett has created an octopus-inspired adhesive,…

Glowing approach could aid carpal tunnel-related surgery

Fluorescein angiography capable of assessing neural blood flow in chronic nerve compression neuropathy. In modern office life, avoiding the onset of carpal tunnel syndrome might be a daily struggle. The…

A stiff material that stops vibrations and noise

Materials researchers have created a new composite material that combines two incompatible properties: stiff yet with a high damping capacity. In brief Oscillations and vibrations damage machines and buildings, while…

Partners & Sponsors