UCI-led study documents heavy air pollution in Canadian area with cancer spikes

Levels of contaminants higher than in some of the world’s most polluted cities have been found downwind of Canada’s largest oil, gas and tar sands processing zone, in a rural area where men suffer elevated rates of cancers linked to such chemicals.

The findings by UC Irvine and University of Michigan scientists, published online this week, reveal high levels of the carcinogens 1,3-butadiene and benzene and other airborne pollutants. The researchers also obtained health records spanning more than a decade that showed the number of men with leukemia and non-Hodgkin’s lymphoma was greater in communities closest to the pollution plumes than in neighboring counties. The work is a dramatic illustration of a new World Health Organization report that outdoor air pollution is a leading cause of cancer.

While the scientists stopped short of saying that the pollutants they documented were definitely causing the male cancers, they strongly recommended that the industrial emissions be decreased to protect both workers and nearby residents.

“Our study was designed to test what kinds of concentrations could be encountered on the ground during a random visit downwind of various facilities. We’re seeing elevated levels of carcinogens and other gases in the same area where we’re seeing excess cancers known to be caused by these chemicals,” said UC Irvine chemist Isobel Simpson, lead author of the paper in Atmospheric Environment. “Our main point is that it would be good to proactively lower these emissions of known carcinogens. You can study it and study it, but at some point you just have to say, ‘Let’s reduce it.’ ”

Co-author Stuart Batterman, a University of Michigan professor of environmental health sciences, agreed: “These levels, found over a broad area, are clearly associated with industrial emissions. They also are evidence of major regulatory gaps in monitoring and controlling such emissions and in public health surveillance.”

The researchers captured emissions in the rural Fort Saskatchewan area downwind of major refineries, chemical manufacturers and tar sands processors owned by BP, Dow, Shell and other companies in the so-called “Industrial Heartland” of Alberta. They took one-minute samples at random times in 2008, 2010 and 2012. All showed similar results. Amounts of some dangerous volatile organic compounds were 6,000 times higher than normal.

The team compared the Alberta plumes to heavily polluted megacities. To their surprise, the scientists saw that levels of some chemicals were higher than in Mexico City during the 1990s or in the still polluted Houston-Galveston area.

Simpson is part of UC Irvine’s Blake-Rowland Group, which has measured air pollution around the world for decades. She and Batterman said the findings were important for other residential areas downwind of refineries and chemical manufacturers, including parts of Los Angeles.

“For any community downwind of heavy industrial activity, I would say it’s certainly prudent to conduct surveys of both air quality – especially carcinogens – and human health,” Simpson said.

“For decades, we’ve known that exposure to outdoor air pollutants can cause respiratory and cardiovascular disease,” Batterman said. “The World Health Organization has now also formally recognized that outdoor air pollution is a leading environmental cause of cancer deaths.”

Longtime residents near industrial Alberta have struggled to bring attention to bad odors, health threats and related concerns. The peer-reviewed study is one of few in the region and more investigation of the large and complex facilities is needed.

For example, Simpson said, it appeared in some cases that the companies were not reporting all of the tons of chemicals they release. She and her colleagues documented high levels of 1,3-butadiene that could only have come from one facility, but she said the company had not reported any such emissions.

Other authors are Josette Marrero, Simone Meinardi, Barbara Barletta and Donald Blake, all of UC Irvine.

About the University of California, Irvine: Located in coastal Orange County, near a thriving high-tech hub in one of the nation’s safest cities, UC Irvine was founded in 1965. One of only 62 members of the Association of American Universities, it’s ranked first among U.S. universities under 50 years old by the London-based Times Higher Education. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Michael Drake since 2005, UC Irvine has more than 28,000 students and offers 192 degree programs. It’s Orange County’s second-largest employer, contributing $4.3 billion annually to the local economy.

Media access: UC Irvine maintains an online directory of faculty available as experts to the media at today.uci.edu/experts. Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

Media Contact

Janet Wilson EurekAlert!

More Information:

http://www.uci.edu

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Nerve cells of blind mice retain their visual function

Nerve cells in the retina were analysed at TU Wien (Vienna) using microelectrodes. They show astonishingly stable behavior – good news for retina implants. The retina is often referred to…

State-wide center for quantum science

Karlsruhe Institute of Technology joins IQST as a new partner. The mission of IQST is to further our understanding of nature and develop innovative technologies based on quantum science by…

Newly designed nanomaterial

…shows promise as antimicrobial agent. Rice scientists develop nanocrystals that kill bacteria under visible light. Newly developed halide perovskite nanocrystals (HPNCs) show potential as antimicrobial agents that are stable, effective…