Bone Replacement by Dental Progenitor Cells – Repair or replacement of damaged or destroyed craniofacial tissue
Periodontal disease, edentulism (tooth loss), cysts and malignant tumors are some of the major causes of bone loss in the periodontium. For these patients a long lasting replacement of high quality is essential.
Dental stem cells become increasingly attractive for the use in bone regeneration. In the present invention, non-embryonic stem cells from apical perifollicular tissue (dental neural crest-derived progenitor cells, dNC-PCs) of retained human third molars have been isolated and characterized as osteogenic progenitor cells. The cells have been derived from a tissue that is located in the immediate vicinity of immature developing teeth or wisdom teeth. The living soft tissue residing underneath the dental papilla is clearly distinguished from other tooth tissue, such as dental papilla or follicle. The neural crest-derived and multipotent cells can be stimulated to differentiate into bone-forming cells or craniofacial cells or tissue as well as into nerve tissue. Because the dNC-PCs are neural crest derived and express the corresponding markers, they should be suitable to replace all the neural crest-derived craniofacial tissues.
Further Information: PDF
PROvendis GmbH
Phone: +49 (0)208/94105 10
Contact
Dipl.-Ing. Alfred Schillert
Media Contact
All latest news from the category: Technology Offerings
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…