Efficient method for Chain Multiplication of unsaturated fatty acids – synthesis of ultra long-chain compounds
Currently, there are only very few, costly synthetic routes for the production of ultra long-chain compounds, as they typically rely on tedious multistep reaction sequences.
At the University of Konstanz (in the course of a project funded by the Baden-Württemberg Foundation), an iterative method (any multiplication factor) has been developed that produces terminally functionalized, purely aliphatic compounds through a Chain Doubling approach starting from common monounsaturated fatty acids. All starting materials are readily available and the individual steps of the catalytic process do not involve further reagents. Moreover, there is only a small amount of byproducts which makes the method very efficient.
The method described here can be applied for the production of high-melting, purely aliphatic polymers and nanocrystals.
Further information: PDF
Technologie-Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH
Phone: +49 (0)721/79 00 40
Contact
Dipl.-Biol. Marcus Lehnen, MBA
As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.
Media Contact
All latest news from the category: Technology Offerings
Newest articles
Can lab-grown neurons exhibit plasticity?
“Neurons that fire together, wire together” describes the neural plasticity seen in human brains, but neurons grown in a dish don’t seem to follow these rules. Neurons that are cultured…
Unlocking the journey of gold through magmatic fluids
By studying sulphur in magmatic fluids at extreme pressures and temperatures, a UNIGE team is revolutionising our understanding of gold transport and ore deposit formation. When one tectonic plate sinks…
3D concrete printing method that captures carbon dioxide
Scientists at Nanyang Technological University, Singapore (NTU Singapore) have developed a 3D concrete printing method that captures carbon, demonstrating a new pathway to reduce the environmental impact of the construction…