FTO Knock-out – Non-human mammals for elucidating the role of FTO in obesity

Obesity is a growing health problem in the industrialised

countries. Especially cardiovascular diseases and type II diabetes are closely linked to a high body mass index (BMI). Humans with a BMI above 40 are considered morbidly obese. Apart from diet and lack of exercise also genetic predisposition is a major factor in obesity. Various genes have been studied to elucidate the role in increased body weight. The fat mass and obesity associated gene (FTO) is located on human chromosome 16. While the phenotypic association is clear, the physiological basis is poorly understood. FTO contains a nuclear localisation signal and shows a ubiquitous expression pattern including metabolically relevant tissues such as pancreas, liver and the hypothalamus. The present invention provides non-human mammals with partial or total disruption of the FTO gene or protein function. The invention provides model animals for studying the functional role of FTO. It further provides mammalian cells for high throughput screening of agents modifying the function of FTO.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

AI to improve brain cancer diagnosis, monitoring, treatment

Recommendations published in The Lancet Oncology call for good clinical practice of new technologies to modernize decades-old standard of care for brain cancer patients. An international, multidisciplinary team of leading…

AI tool ‘sees’ cancer gene signatures in biopsy images

AI tool reads biopsy images… To determine the type and severity of a cancer, pathologists typically analyze thin slices of a tumor biopsy under a microscope. But to figure out…

Skull bone marrow expands throughout life

…and remains healthy during aging. Blood vessels and stromal cells in the bone marrow create an ideal environment for hematopoietic stem cells to continuously produce all blood cells. During aging,…