In Vivo Screening Based on Fluorescence to Identify Novel Antimicrobial Substances

The hierarchical and precisely controlled process creating ribosomes in living cells is known as ribosome assembly and is relatively little researched. In the eyes of many experts the early processes in the creation of ribosomes offer attractive targets for antimicrobial agents. The systematic search for such substances is made more difficult by the fact, that currently no suitable screening processes exist.

The present invention consists of stable bacterial strains with ribosomal subunits incorporating fluorescent markers, which have growth characteristics similar to wild type, and which have an intact translation apparatus. The positioning of the fluorophores allows for disturbances in the ribosome assembly to be detected in vivo by a fluorescence-based readout process. The process has been optimized for use with multi-well plates and thus is suitable for use in high throughput screenings (HTS).

Further information: PDF

Technologie-Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH
Phone: +49 (0)721/79 00 40

Contact
Dipl.-Biol. Marcus Lehnen, MBA

As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

3D tumor model for retinoblastoma research highlighting tumor-environment interactions.

Retinoblastoma: Eye-Catching Investigation into Retinal Tumor Cells

A research team from the Medical Faculty of the University of Duisburg-Essen and the University Hospital Essen has developed a new cell culture model that can be used to better…

Private wells serving as emergency water sources to enhance disaster resilience during crises.

A Job Well Done: How Hiroshima’s Groundwater Strategy Helped Manage Floods

Groundwater and multilevel cooperation in recovery efforts mitigated water crisis after flooding. Converting Disasters into Opportunities Society is often vulnerable to disasters, but how humans manage during and after can…

DNA origami structures controlling biological membranes for targeted drug delivery

Shaping the Future: DNA Nanorobots That Can Modify Synthetic Cells

Scientists at the University of Stuttgart have succeeded in controlling the structure and function of biological membranes with the help of “DNA origami”. The system they developed may facilitate the…