Method to produce multilayer crystalline graphene (GRAL) for use in lithium-ion batteries
The unique physical and chemical properties arising
from graphene may lead to remarkable advantages in the fields of electronics and energy storage devices. Its superior electronic conductivity and the single-to few-atoms thickness are particularly appealing for the use as anode material for lithium-ion batteries. Graphene ́s electrochemical properties, relevant for its use in batteries, are strongly depending on its synthesis.
The innovative method object of this invention is a
n ionic liquid-assisted microwave exfoliation of expanded graphite. It allows the bulk production of high-quality multilayer crystalline graphene flakes. Used as anode material in lithium-ion batteries, at low temperatures (< 0°C) it shows advanced lithium-ion storage performance, when compared with commercially available graphite.
Further information: PDF
PROvendis GmbH
Phone: +49 (0)208/94105 10
Contact
Dipl.-Ing. Alfred Schillert
As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.
Media Contact
All latest news from the category: Technology Offerings
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…