A herbal remedy is effective against the Ebola virus. The natural compound silvestrol reduces the number of pathogens in infected cells. Also the production of virulent proteins is largely suppressed if the natural substance is used.
Yellow mosaic virus disease leads to substantial losses – up to 50 % of the yield – in susceptible barley varieties (Hordeum vulgare). The disease is caused by different strains of Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV). It cannot be cured by chemical treatment. The present invention provides a new recessive resistance gene. Variants of the gene lead to resistance against all agents known to cause yellow mosaic virus disease in Europe.
Parenteral controlled drug delivery is of crucial importance for the pharmacotherapy of many diseases (e.g. breast and prostate cancer, local inflammation). By means of controlled release systems it is possible to decrease the frequency of administration (from hours to months), to increase drug efficiency and to decrease side effects. The problem is solved by providing Direct Injectable Polymer Solutions (DIPOs) which act as a depot after administration. Their polarity and degradation rate is adjustable. They are much less acidic compared to PLA/PLGA polymers.
Parenteral controlled drug delivery is of crucial importance for the pharmacotherapy of many diseases (e.g. breast and prostate cancer, local inflammation). By means of controlled release systems it is possible to decrease the frequency of administration (from hours to months), to increase drug efficiency and to decrease side effects. Direct Injectable OleoGels (DIOGs) and In Situ Forming OleoGels (ISFOGs) were developed as new, biodegradable and lipid based formulations for parenteral controlled release applications. Both formulations have many advantages in terms of manufacturability, rheological properties and release control compared to the currently used drug delivery systems.
DNA assembly methods such as such as Gibson and Golden Gate cloning are basic tools for synthetic biology. Both methods allow assembly of constructs from multiple DNA fragments in a one-pot one-step assembly reaction. Standardization of parts is another essential element of modern synthetic biology. A novel method has been developed to assemble constructs from several individual DNA parts – each kept on a solid carrier – directly in a one-pot one-step reaction.
Dendrimers are spherical, highly branched polymers used in the fields of drug delivery and drug targeting, DNA/RNA delivery, imaging, protein labelling, protein crosslinking and protein separation, coagulation inhibition, and surface, cell and tissue recognition. They are also used as macroamphiphiles and catalyst supports. All previously existing dendrimers require special, branched and partially protected or polyreactive building blocks for their synthesis. A disadvantage is the limited range of dendrimers with varying structures that can be produced, and the concentration to few dendron forming functional groups.
The new technology offers the possibility of synthesising dendrimers with almost any combination of branch lengths, degree of branching, internal and terminal groups. This is achieved by means of multiple iterative multicomponent reactions, e.g. with acidic, alkaline, hydrophilic, lipophilic, sugar and other functional groups.