Stabilization of Miniaturized Intracavity Frequency-Doubled Lasers
Kurzbeschreibung zum Projekt, EN The so-called 'green problem' became relevant with the need to miniaturize cw intracavity frequency doubled solid state lasers. One can see the green problem as high frequency (MHz-range), high contrast ((ΔI / I> 0,6) intensity modulation.
There are mainly two standard solutions: a) using a long resonator – which means, that you must not miniaturize the laser – results in using as many longitudinal modes as mode hopping does not cause significant intensity noise. b) forcing a single mode operation, which is accompanied by significant loss of intensity. The Georg-August-Universität of Göttingen proposes a method based on a multiple time delayed feedback control. A signal generated from intensities of the fundamental modes is fed back to the pump power. The result is a highly stable output (peak-to-peak better 1%) with nearly no loss of intensity. Such stable cw-lasers with high beam quality are used in measurement and medicin, but in RGB projection systems and holografic displays. Now these systems can be miniaturized.
Further Information: PDF
MBM ScienceBridge GmbH
Phone: (0551) 30724-151
Contact
Dr. Jens-Peter Horst
Media Contact
All latest news from the category: Technology Offerings
Newest articles
AI to improve brain cancer diagnosis, monitoring, treatment
Recommendations published in The Lancet Oncology call for good clinical practice of new technologies to modernize decades-old standard of care for brain cancer patients. An international, multidisciplinary team of leading…
AI tool ‘sees’ cancer gene signatures in biopsy images
AI tool reads biopsy images… To determine the type and severity of a cancer, pathologists typically analyze thin slices of a tumor biopsy under a microscope. But to figure out…
Skull bone marrow expands throughout life
…and remains healthy during aging. Blood vessels and stromal cells in the bone marrow create an ideal environment for hematopoietic stem cells to continuously produce all blood cells. During aging,…