Temperature-Independent High Precision Resistor and Expansion Sensor (nanoNi@C®)

A combination of metal and carbon layers enables to combine the two main characteristics “high expansion sensitivity” and “temperature-independence of the resistor” in one single material. The negative temperature coefficient of carbon is balanced by insertion of metal (nickel) with a positive temperature coefficient, leading to the possibility of producing a material using very low temperature dependence. This new technology offers temperature-independent (± 11 ppm/K in measuring range of 25-200 °C) resistors that show a strong modification of electric resistance depending on the material’s expansion.

Further Information: PDF

Universität des Saarlandes Wissens- und Technologietransfer GmbH PatentVerwertungsAgentur der saarländischen Hochschulen
Phone: +49 (0)681/302-71302

Contact
Dipl.-Kfm. Axel Koch (MBA), Dr. Conny Clausen, Dr. Hauke Studier, Dr. Susanne Heiligenstein

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…