Laser cladding now four times faster
At the LAM in Houston (Texas, USA) and the LASYS in Stuttgart (Germany), Fraunhofer IWS Dresden and Laserline are presenting a highly productive, compact coaxial head for laser assisted cladding.
The induction module is arranged coaxially around the nozzle so that it’s fully omnidirectional. This arrangement of the hybrid cladding head offers increased performance, high ease of use, easy automation and high robustness.
Combining a solid-state laser (4 kW) with a locally integrated additional induction module (14 kW), the patented COAXpowerline head by Fraunhofer IWS enables deposition rates of 8 kg metallic powder per hour. Up to four times higher rates can be provided compared with a single 4 kW solid-state laser. Thus, even small lasers can reach deposition rates in the range of plasma transferred arc (PTA) surfacing, without undercuts and at mixing degrees below 8 %.
If one dares a view into the near future, technically and economically meaningful upper limits are to be expected at 10 kW diode laser power and 40 kW induction power. With this combination, deposition rates of up to 30 kg metallic powder per hour could be realized. The researchers of Fraunhofer IWS are looking forward to take on this challenging task.
With the COAXpowerline head the energetic overall efficiency can already be increased by more a factor of two. Where otherwise a 10 KW laser would be necessary, now a 4 kW laser will be sufficient! Thus, the investment costs per kW of total power can be reduced by at least 50%.
A further effect that characterizes the new system is the wider range of materials that can be processed. Simultaneous base material preheating enables the crack-free deposition of especially hard and wear resistant materials. Coatings with a hardness of up to 64 HRC can be reached precisely.
Like all COAXn systems, COAXpowerline provides omnidirectional energy and weld deposit feeding. Yet equipped with the additional induction module the cladding head remains very compact and can be applied regardless the geometry and size of the component. Furthermore, the camera based temperature control system ?E-MAqS? by Fraunhofer IWS can be coaxially integrated in the beam path. This on-line process control represents another unique feature in the market.
For more than twenty years, the Fraunhofer IWS has been developing processing heads for continuous powder and wire feeding. With these components, users are provided with advanced tools for laser cladding applications. During the last ten years, more than 80 systems have found their way into industrial production or research worldwide.
Your contact for further information:
Fraunhofer Institute for Material and Beam Technology IWS Dresden
(Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden)
01277 Dresden, Winterbergstraße 28, Germany
Dr. Steffen Nowotny (System Technology Laser Cladding)
Phone: +49 (0) 351 83391 3241
Fax: +49 (0) 351 83391 3300
E-mail: steffen.nowotny@iws.fraunhofer.de
Dr. Ralf Jäckel (Public Relations)
Phone: +49 (0) 351 83391 3444
Fax: +49 (0) 351 83391 3300
E-mail: ralf.jaeckel@iws.fraunhofer.de
Media Contact
All latest news from the category: Trade Fair News
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…